Learning from Imbalanced Data Sets (E-Book, PDF)

eBook
García, Salvador/Herrera, Francisco/Fernández, Alberto u a
ISBN/EAN: 9783319980744
Sprache: Englisch
Umfang: 11.03 MB
Auflage: 1. Auflage 2018
E-Book
Format: PDF
DRM: Adobe DRM
138,95 €
(inkl. MwSt.)
Download
E-Book Download
This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering.  It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. 
1 Introduction to KDD and Data Science.- 2 Foundations on Imbalanced Classification.- 3 Performance measures.- 4 Cost-sensitive Learning.- 5 Data Level Preprocessing Methods.- 6 Algorithm-level Approaches.- 7 Ensemble Learning.- 8 Imbalanced Classification with Multiple Classes.- 9 Dimensionality Reduction for Imbalanced Learning.- 10 Data Intrinsic Characteristics.- 11 Learning from Imbalanced Data Streams.- 12 Non-Classical Imbalanced Classification Problems.- 13 Imbalanced Classification for Big Data.- 14 Software and Libraries for Imbalanced Classification. 
Alle hier erworbenen E-Books können Sie in Ihrem Kundenkonto in die kostenlose PocketBook Cloud laden. Dadurch haben Sie den Vorteil, dass Sie von Ihrem PocketBook E-Reader, Ihrem Smartphone, Tablet und PC jederzeit auf Ihre gekauften und bereits vorhandenen E-Books Zugriff haben.

Um die PocketBook Cloud zu aktivieren, loggen Sie sich bitte in Ihrem Kundenkonto ein und gehen dort in den Bereich „E-Books“. Setzen Sie hier einen Haken bei „Neue E-Book-Käufe automatisch zu meiner Cloud hinzufügen.“. Dadurch wird ein PocketBook Cloud Konto für Sie angelegt. Die Zugangsdaten sind dabei dieselben wie die Ihres Kundenkontos in diesem Webshop.

Weitere Informationen zur PocketBook Cloud finden Sie unter www.meinpocketbook.de.

Allgemeine E-Book-Informationen

E-Books in diesem Webshop können in den Dateiformaten EPUB und PDF vorliegen und können ggf. mit einem Kopierschutz versehen sein. Sie finden die entsprechenden Informationen in der Detailansicht des jeweiligen Titels.

E-Books ohne Kopierschutz oder mit einem digitalen Wasserzeichen können Sie problemlos auf Ihr Gerät übertragen. Sie müssen lediglich die Kompatibilität mit Ihrem Gerät prüfen.

Um E-Books, die mit Adobe DRM geschützt sind, auf Ihr Lesegerät zu übertragen, benötigen Sie zusätzlich eine Adobe ID und die kostenlose Software Adobe® Digital Editions, wo Sie Ihre Adobe ID hinterlegen müssen. Beim Herunterladen eines mit Adobe DRM geschützten E-Books erhalten Sie zunächst eine .acsm-Datei, die Sie in Adobe® Digital Editions öffnen müssen. Durch diesen Prozess wird das E-Book mit Ihrer Adobe-ID verknüpft und in Adobe® Digital Editions geöffnet.